Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Development of nanoimprinted InP QDs decorated polyaniline solar cell with conversion efficiency 3%

Identifieur interne : 000F42 ( Main/Repository ); précédent : 000F41; suivant : 000F43

Development of nanoimprinted InP QDs decorated polyaniline solar cell with conversion efficiency 3%

Auteurs : RBID : Pascal:13-0345453

Descripteurs français

English descriptors

Abstract

Organic-inorganic hybrid materials received considerable attention due to promising industrial applications. The originality of novel chemical recipes, allowing incorporation of well-defined nanoparticle structures into complex hybrid architectures, opens new possibilities for multidisciplinary fields and in particular in optoelectronic devices. The rate of non-radiative recombination and energy transfer through a hybrid inorganic/organic nano-composite is mainly governing the ability of charge transfer from semiconductor quantum dots to conjugated polymers. Herein, we report that the electron-hole non-radiative recombination in polymer can be constricted by funneling the diffusion of exciton by engineering a proper morphology of a hybrid nanostructure. InP quantum dots have been selected due to their efficient exciton generation and polyaniline as a conjugated polymer for its potency to suppress non-radiative recombination by restraining exciton diffusion. The hole transfer was monitored via bi-exponential kinetic model and time of flight method. The conversion efficiency of the prepared films increased from 0.23% to 3.1% when the thickness is increased from 14 nm to 157 nm.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0345453

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Development of nanoimprinted InP QDs decorated polyaniline solar cell with conversion efficiency 3%</title>
<author>
<name sortKey="Mahmoud, Waleed E" uniqKey="Mahmoud W">Waleed E. Mahmoud</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>King Abdulaziz University, Faculty of Science, Physics Department</s1>
<s2>Jeddah</s2>
<s3>SAU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Arabie saoudite</country>
<wicri:noRegion>Jeddah</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Chang, Y C" uniqKey="Chang Y">Y. C. Chang</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>King Abdulaziz University, Faculty of Science, Physics Department</s1>
<s2>Jeddah</s2>
<s3>SAU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Arabie saoudite</country>
<wicri:noRegion>Jeddah</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Research Center for Applied Sciences, Academia Sinica, Academia Road, Nankang</s1>
<s2>Taipei 115</s2>
<s3>TWN</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Taïwan</country>
<wicri:noRegion>Taipei 115</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Al Ghamdi, A A" uniqKey="Al Ghamdi A">A. A. Al-Ghamdi</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>King Abdulaziz University, Faculty of Science, Physics Department</s1>
<s2>Jeddah</s2>
<s3>SAU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Arabie saoudite</country>
<wicri:noRegion>Jeddah</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Al Marzouki, F" uniqKey="Al Marzouki F">F. Al-Marzouki</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>King Abdulaziz University, Faculty of Science, Physics Department</s1>
<s2>Jeddah</s2>
<s3>SAU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Arabie saoudite</country>
<wicri:noRegion>Jeddah</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Bronstein, Lyudmila M" uniqKey="Bronstein L">Lyudmila M. Bronstein</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>King Abdulaziz University, Faculty of Science, Physics Department</s1>
<s2>Jeddah</s2>
<s3>SAU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Arabie saoudite</country>
<wicri:noRegion>Jeddah</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Indiana University, Department of Chemistry</s1>
<s2>Bloomington, IN 47405</s2>
<s3>USA</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Bloomington, IN 47405</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0345453</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0345453 INIST</idno>
<idno type="RBID">Pascal:13-0345453</idno>
<idno type="wicri:Area/Main/Corpus">000564</idno>
<idno type="wicri:Area/Main/Repository">000F42</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">1566-1199</idno>
<title level="j" type="abbreviated">Org. electron. : (Print)</title>
<title level="j" type="main">Organic electronics : (Print)</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Aniline polymer</term>
<term>Binary compound</term>
<term>Charge carrier recombination</term>
<term>Charge transfer</term>
<term>Conjugated polymer</term>
<term>Conversion rate</term>
<term>Diffusion</term>
<term>Energy transfer</term>
<term>Exciton</term>
<term>Indium phosphide</term>
<term>Industrial application</term>
<term>Kinetic model</term>
<term>Microelectronic fabrication</term>
<term>Microstructure</term>
<term>Monitor</term>
<term>Morphology</term>
<term>Multidisciplinary</term>
<term>Nanocomposite</term>
<term>Nanoimprint</term>
<term>Nanolithography</term>
<term>Nanoparticle</term>
<term>Nanostructure</term>
<term>Non radiative recombination</term>
<term>Optoelectronic device</term>
<term>Organic-inorganic hybrid materials</term>
<term>Quantum dot</term>
<term>Semiconductor quantum dots</term>
<term>Solar cell</term>
<term>Thickness</term>
<term>Time of flight method</term>
<term>Vacuum ultraviolet radiation</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Nanolithographie</term>
<term>Nanoimpression</term>
<term>Cellule solaire</term>
<term>Taux conversion</term>
<term>Application industrielle</term>
<term>Multidisciplinaire</term>
<term>Dispositif optoélectronique</term>
<term>Recombinaison non radiative</term>
<term>Transfert énergie</term>
<term>Transfert charge</term>
<term>Recombinaison porteur charge</term>
<term>Diffusion(transport)</term>
<term>Exciton</term>
<term>Microstructure</term>
<term>Morphologie</term>
<term>Nanostructure</term>
<term>Moniteur</term>
<term>Modèle cinétique</term>
<term>Méthode temps vol</term>
<term>Epaisseur</term>
<term>Rayonnement UV extrême</term>
<term>Phosphure d'indium</term>
<term>Composé binaire</term>
<term>Aniline polymère</term>
<term>Matériau hybride organique minéral</term>
<term>Nanoparticule</term>
<term>Nanocomposite</term>
<term>Point quantique semiconducteur</term>
<term>Polymère conjugué</term>
<term>Point quantique</term>
<term>Fabrication microélectronique</term>
<term>8116N</term>
<term>8235C</term>
<term>8460J</term>
<term>8107B</term>
<term>InP</term>
<term>6630P</term>
<term>66</term>
<term>7135</term>
<term>6865</term>
<term>8107T</term>
<term>8535B</term>
<term>8540H</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Organic-inorganic hybrid materials received considerable attention due to promising industrial applications. The originality of novel chemical recipes, allowing incorporation of well-defined nanoparticle structures into complex hybrid architectures, opens new possibilities for multidisciplinary fields and in particular in optoelectronic devices. The rate of non-radiative recombination and energy transfer through a hybrid inorganic/organic nano-composite is mainly governing the ability of charge transfer from semiconductor quantum dots to conjugated polymers. Herein, we report that the electron-hole non-radiative recombination in polymer can be constricted by funneling the diffusion of exciton by engineering a proper morphology of a hybrid nanostructure. InP quantum dots have been selected due to their efficient exciton generation and polyaniline as a conjugated polymer for its potency to suppress non-radiative recombination by restraining exciton diffusion. The hole transfer was monitored via bi-exponential kinetic model and time of flight method. The conversion efficiency of the prepared films increased from 0.23% to 3.1% when the thickness is increased from 14 nm to 157 nm.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1566-1199</s0>
</fA01>
<fA03 i2="1">
<s0>Org. electron. : (Print)</s0>
</fA03>
<fA05>
<s2>14</s2>
</fA05>
<fA06>
<s2>11</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Development of nanoimprinted InP QDs decorated polyaniline solar cell with conversion efficiency 3%</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>MAHMOUD (Waleed E.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>CHANG (Y. C.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>AL-GHAMDI (A. A.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>AL-MARZOUKI (F.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>BRONSTEIN (Lyudmila M.)</s1>
</fA11>
<fA14 i1="01">
<s1>King Abdulaziz University, Faculty of Science, Physics Department</s1>
<s2>Jeddah</s2>
<s3>SAU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Research Center for Applied Sciences, Academia Sinica, Academia Road, Nankang</s1>
<s2>Taipei 115</s2>
<s3>TWN</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Indiana University, Department of Chemistry</s1>
<s2>Bloomington, IN 47405</s2>
<s3>USA</s3>
<sZ>5 aut.</sZ>
</fA14>
<fA20>
<s1>2762-2769</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>27255</s2>
<s5>354000501043310080</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>45 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0345453</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Organic electronics : (Print)</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Organic-inorganic hybrid materials received considerable attention due to promising industrial applications. The originality of novel chemical recipes, allowing incorporation of well-defined nanoparticle structures into complex hybrid architectures, opens new possibilities for multidisciplinary fields and in particular in optoelectronic devices. The rate of non-radiative recombination and energy transfer through a hybrid inorganic/organic nano-composite is mainly governing the ability of charge transfer from semiconductor quantum dots to conjugated polymers. Herein, we report that the electron-hole non-radiative recombination in polymer can be constricted by funneling the diffusion of exciton by engineering a proper morphology of a hybrid nanostructure. InP quantum dots have been selected due to their efficient exciton generation and polyaniline as a conjugated polymer for its potency to suppress non-radiative recombination by restraining exciton diffusion. The hole transfer was monitored via bi-exponential kinetic model and time of flight method. The conversion efficiency of the prepared films increased from 0.23% to 3.1% when the thickness is increased from 14 nm to 157 nm.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D03F17</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B80A16R</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>001D03F15</s0>
</fC02>
<fC02 i1="04" i2="X">
<s0>001D06C02D1</s0>
</fC02>
<fC02 i1="05" i2="X">
<s0>230</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Nanolithographie</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Nanolithography</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Nanoimpression</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Nanoimprint</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Nanoimpresión</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Cellule solaire</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Solar cell</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Célula solar</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Taux conversion</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Conversion rate</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Factor conversión</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Application industrielle</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Industrial application</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Aplicación industrial</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Multidisciplinaire</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Multidisciplinary</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Multidisciplinar</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Dispositif optoélectronique</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Optoelectronic device</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Dispositivo optoelectrónico</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Recombinaison non radiative</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Non radiative recombination</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Recombinación no radiativa</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Transfert énergie</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Energy transfer</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Transferencia energía</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Transfert charge</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Charge transfer</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Transferencia carga</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Recombinaison porteur charge</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Charge carrier recombination</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Recombinación portador carga</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Diffusion(transport)</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Diffusion</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Exciton</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Exciton</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Excitón</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Microstructure</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Microstructure</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Microestructura</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Morphologie</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Morphology</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Morfología</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Nanostructure</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Nanostructure</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Nanoestructura</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Moniteur</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Monitor</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Monitor</s0>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Modèle cinétique</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Kinetic model</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Modelo cinético</s0>
<s5>18</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Méthode temps vol</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Time of flight method</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Método tiempo vuelo</s0>
<s5>19</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Epaisseur</s0>
<s5>20</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>Thickness</s0>
<s5>20</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Espesor</s0>
<s5>20</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>Rayonnement UV extrême</s0>
<s5>21</s5>
</fC03>
<fC03 i1="21" i2="X" l="ENG">
<s0>Vacuum ultraviolet radiation</s0>
<s5>21</s5>
</fC03>
<fC03 i1="21" i2="X" l="SPA">
<s0>Radiación ultravioleta extrema</s0>
<s5>21</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>Phosphure d'indium</s0>
<s5>22</s5>
</fC03>
<fC03 i1="22" i2="X" l="ENG">
<s0>Indium phosphide</s0>
<s5>22</s5>
</fC03>
<fC03 i1="22" i2="X" l="SPA">
<s0>Indio fosfuro</s0>
<s5>22</s5>
</fC03>
<fC03 i1="23" i2="X" l="FRE">
<s0>Composé binaire</s0>
<s5>23</s5>
</fC03>
<fC03 i1="23" i2="X" l="ENG">
<s0>Binary compound</s0>
<s5>23</s5>
</fC03>
<fC03 i1="23" i2="X" l="SPA">
<s0>Compuesto binario</s0>
<s5>23</s5>
</fC03>
<fC03 i1="24" i2="X" l="FRE">
<s0>Aniline polymère</s0>
<s2>NK</s2>
<s5>24</s5>
</fC03>
<fC03 i1="24" i2="X" l="ENG">
<s0>Aniline polymer</s0>
<s2>NK</s2>
<s5>24</s5>
</fC03>
<fC03 i1="24" i2="X" l="SPA">
<s0>Anilina polímero</s0>
<s2>NK</s2>
<s5>24</s5>
</fC03>
<fC03 i1="25" i2="3" l="FRE">
<s0>Matériau hybride organique minéral</s0>
<s5>25</s5>
</fC03>
<fC03 i1="25" i2="3" l="ENG">
<s0>Organic-inorganic hybrid materials</s0>
<s5>25</s5>
</fC03>
<fC03 i1="26" i2="X" l="FRE">
<s0>Nanoparticule</s0>
<s5>26</s5>
</fC03>
<fC03 i1="26" i2="X" l="ENG">
<s0>Nanoparticle</s0>
<s5>26</s5>
</fC03>
<fC03 i1="26" i2="X" l="SPA">
<s0>Nanopartícula</s0>
<s5>26</s5>
</fC03>
<fC03 i1="27" i2="X" l="FRE">
<s0>Nanocomposite</s0>
<s5>27</s5>
</fC03>
<fC03 i1="27" i2="X" l="ENG">
<s0>Nanocomposite</s0>
<s5>27</s5>
</fC03>
<fC03 i1="27" i2="X" l="SPA">
<s0>Nanocompuesto</s0>
<s5>27</s5>
</fC03>
<fC03 i1="28" i2="3" l="FRE">
<s0>Point quantique semiconducteur</s0>
<s5>28</s5>
</fC03>
<fC03 i1="28" i2="3" l="ENG">
<s0>Semiconductor quantum dots</s0>
<s5>28</s5>
</fC03>
<fC03 i1="29" i2="X" l="FRE">
<s0>Polymère conjugué</s0>
<s5>29</s5>
</fC03>
<fC03 i1="29" i2="X" l="ENG">
<s0>Conjugated polymer</s0>
<s5>29</s5>
</fC03>
<fC03 i1="29" i2="X" l="SPA">
<s0>Polímero conjugado</s0>
<s5>29</s5>
</fC03>
<fC03 i1="30" i2="X" l="FRE">
<s0>Point quantique</s0>
<s5>30</s5>
</fC03>
<fC03 i1="30" i2="X" l="ENG">
<s0>Quantum dot</s0>
<s5>30</s5>
</fC03>
<fC03 i1="30" i2="X" l="SPA">
<s0>Punto cuántico</s0>
<s5>30</s5>
</fC03>
<fC03 i1="31" i2="X" l="FRE">
<s0>Fabrication microélectronique</s0>
<s5>46</s5>
</fC03>
<fC03 i1="31" i2="X" l="ENG">
<s0>Microelectronic fabrication</s0>
<s5>46</s5>
</fC03>
<fC03 i1="31" i2="X" l="SPA">
<s0>Fabricación microeléctrica</s0>
<s5>46</s5>
</fC03>
<fC03 i1="32" i2="X" l="FRE">
<s0>8116N</s0>
<s4>INC</s4>
<s5>56</s5>
</fC03>
<fC03 i1="33" i2="X" l="FRE">
<s0>8235C</s0>
<s4>INC</s4>
<s5>57</s5>
</fC03>
<fC03 i1="34" i2="X" l="FRE">
<s0>8460J</s0>
<s4>INC</s4>
<s5>58</s5>
</fC03>
<fC03 i1="35" i2="X" l="FRE">
<s0>8107B</s0>
<s4>INC</s4>
<s5>59</s5>
</fC03>
<fC03 i1="36" i2="X" l="FRE">
<s0>InP</s0>
<s4>INC</s4>
<s5>82</s5>
</fC03>
<fC03 i1="37" i2="X" l="FRE">
<s0>6630P</s0>
<s4>INC</s4>
<s5>83</s5>
</fC03>
<fC03 i1="38" i2="X" l="FRE">
<s0>66</s0>
<s4>INC</s4>
<s5>84</s5>
</fC03>
<fC03 i1="39" i2="X" l="FRE">
<s0>7135</s0>
<s4>INC</s4>
<s5>85</s5>
</fC03>
<fC03 i1="40" i2="X" l="FRE">
<s0>6865</s0>
<s4>INC</s4>
<s5>86</s5>
</fC03>
<fC03 i1="41" i2="X" l="FRE">
<s0>8107T</s0>
<s4>INC</s4>
<s5>87</s5>
</fC03>
<fC03 i1="42" i2="X" l="FRE">
<s0>8535B</s0>
<s4>INC</s4>
<s5>88</s5>
</fC03>
<fC03 i1="43" i2="X" l="FRE">
<s0>8540H</s0>
<s4>INC</s4>
<s5>89</s5>
</fC03>
<fN21>
<s1>329</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000F42 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000F42 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:13-0345453
   |texte=   Development of nanoimprinted InP QDs decorated polyaniline solar cell with conversion efficiency 3%
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024